Synthesis and Molecular Structures of *nido*-[9-(η-C₅H₅)-7,8,9-C₂NiB₈H₁₁], *nido* - [**9-** (q - **C5 H5)** - *p,* **o,l** - (**P hB PAu**) **-7,8,9- C2 N i B, H,,]** , **and** $c/cos\theta$ -[1,3-(η -C₅H₃)₂-1,2,3,4-CrCCrCB₈H₁₀]; Evidence for a Multiple **Metal-Metal Bond in a Dimetallacarbaborane**

Geoffrey K. Barker,^a Norman R. Godfrey,^a Michael Green,^a Hans E. Parge,^b F. Gordon A. Stone,^a and Alan J. Welch^b

^aDepartment of Inorganic Chemistry, The University, Bristol BS8 I TS, U.K. **^b***De war Crystallographic Laboratory, Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, u. K.*

From *nido-*5,6-C₂B₈H₁₂, the compounds *nido-*[9-(η -C₅H₅)-7,8,9-C₂NiB₈H₁₁], *nido-*[9-(η -C₅H₅)- μ ₁₀,₁₁-(Ph₃PAu)-7,8,9-C₂NiB₈H₁₀], and *closo-*[1,3-(η -C₅H₅)₂-1,2,3,4-CrCCrCB their structural identities established by X-ray crystallography.

We have previously shown¹ that the μ -B-H-B bonds in stepwise introduction of metal-ligand fragments into the nido-5,6-C₂B₈H₁₂ are sufficiently electrophilic to react with carbaborane cage. Some years ago the compound $[Pt_2(\mu$ -cod)(PEt₃)₄) to give [9-H-9,9-(Et₃P₎₂- $\mu_{10,11}$ -H-7,8,9- MeGaC₂B₄H₆ was obtained f $[Pt_2(\mu\text{-cod})(PEt_3)_4]$ to give $[9-H-9,9-(Et_3P)_2-\mu_{10,11}-H-7,8,9-$ MeGaC₂B₄H₆ was obtained from the reaction between GaMe₃ C₂PtB₈H₁₀] (cod = cyclo-octa-1,5-diene). This suggested and *nido*-C₂B₄H₈,² and that the μ -B-H-B groups in the *nido*-carbaborane might main group metal alkyls react with borancleave metal-carbon bonds (formally a protolysis) allowing alkane and formation of a metallaborane.³ cleave metal-carbon bonds (formally a protolysis) allowing

and *nido*-C₂B₄H₈,² and it has long been known that certain main group metal alkyls react with boranes with release of

Treatment (60 °C, light petroleum) of nido-5,6-C₂B₈H₁₂ with $[Ni(\eta-C_5H_5)_2]$ afforded (Scheme 1) wine-red crystals of **(1)** *(85%).?* Having 26 skeletal electrons, **(1)** should adopt a nido-icosahedral geometry. In order to establish unambiguously the nature of its open face an X -ray diffraction study was carried out.[#] unambigu-
tion study
(1) (Figure
Vi C C B B

The analysis confirms that the cage structure of **(1)** (Figure

1) is that of a nido-icosahedron with an open NiCC.B-B pentagonal face. The crystal structure suffers from two unrelated rotational disorders, one involving the cyclopentadienyl ring and the other the C_2B_8 unit. The latter has not allowed location of the H atom that bridges the B(10) \cdots B(11) connectivity, although all terminal hydrogen atoms have been positionally refined. Formation of **(1)** corresponds to protonation of one of the η -C₅H₅ ligands of nickelocene, followed by loss of C_5H_6 , and incorporation of an $Ni(\eta$ -C₅H₅) fragment into the cage.

The remaining μ -B-H-B hydrogen in (1) is also reactive, and in refluxing tetrahydrofuran $(8 h)$ with $[AuMe(PPh₃)]$ affords (Scheme 1) a green crystalline complex **(2) (45%).?** A single-crystal X -ray diffraction study \ddagger showed (Figure 2) that in (2) the $\mu_{10,11}$ -H of (1) had been replaced by the isolobal AuPPh, fragment without any major change in cluster geometry.*-'

Formation of **(1)** followed by **(2)** illustrates successive replacement of μ -B-H-B hydrogens by metal fragments. Evidently with more reactive precursors a 'double' metal insertion occurs. Thus $C_2B_8H_{12}$ with $[Cr(\eta-C_5H_5)_2]$ (tetra-

t Selected spectroscopic data [i.r. measured in Nujol, 'lB- **('H**) and ¹¹B n.m.r. in CDCI₃ with δ (p.p.m.) to high frequency of and -5 i.i.i., in CDC₁₃ wind of the Hz): compound (1), v_{BH}
(max) at 2 546s and 2 542(sh) cm⁻¹, ¹¹B-{¹H} n.m.r., δ 19.5, 13.7,
(max) at 2 546s and 2 542(sh) cm⁻¹, ¹¹B-{¹H} n.m.r., δ 19.5, 13.7,
3.4, [156], -2.7 [d(br.), 1 B, $J(BH)$ 151], -7.9 [d of d, 1 B, $J(BH)$
156], -2.7 [d(br.), 1 B, $J(BH)$ 151], -7.9 [d of d, 1 B, $J(BH)$
149, $J(BHB)$ 46], -17.5 [d(br.), 1 B, $J(BH)$ 117], -19.7 [d(br.),
1 B, $J(BH)$ 161 2 583m, 2 561m, 2 529s, 2 490w(sh), and 2 457w cm⁻¹

\$ The atomic co-ordinates for this **work** are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by

the full literature citation for this communication.
 Crystal data for (1): C₇H₁₆B₈Ni, $M = 245.3$, monoclinic,

space group $P2_1/c$, $a = 11.5343(14)$, $b = 6.5464(9)$, $c = 16.393(2)$ Å, $\beta = 99.306(10)^\circ$, $U = 1221$ $Z = 4$, $F(000) = 504$ electrons, $\mu(Mo-K_{\alpha}) = 14.79$ cm⁻¹. Of 3 713 symmetry-independent intensities measured on an Enraf-Nonius CAD4 diffractometer to $\theta_{\text{max}} = 27.5^{\circ}$ (Mo- K_{α} X- $Z = 4$, $F(000) = 504$ electrons, $\mu(Mo-K\overline{\alpha}) = 14.79$ cm⁻¹. Of 3 713 symmetry-independent intensities measured on an Enraf-
Nonius CAD4 diffractometer to $\theta_{\text{max}} = 2.75^\circ$ (Mo- K_{α} X-
radiation, $\overline{\lambda} = 0.710$ 69 Å 0.071 **4.**

Crystal data for (2): $C_{25}H_{30}B_8NiAuP$, *M* = 703.7, mono-
clinic, space group P_{21}/c , *a* = 11.804 5(8), *b* = 12.208 0(8), $c = 19.333(2)$ A, $\rho = 93.970(0)$, $C = 2808.2$ A, $p_0 = 1.664$ g cm⁻³, $Z = 4$, $F(000) = 1.368$ electrons, $\mu(\text{Mo-}K_{\overline{a}}) =$ 57.25 cm⁻¹. Intensity data were collected as for (1) to $\theta_{\text{max}} =$ 26" supplying 5 440 unique structure factor amplitudes corrected for absorption. Structural solution (Patterson) and refinement cmic, space group $T2_1/c$, $u = 11.664$ 5(6), $v = 12.266$ 6(6),
c = 19.533(2) Å, β = 93.976(6)°, $U = 2808.2 \text{ Å}^3$, $D_e =$

(full matrix least squares) using 3 886 data $[F_0 \ge 2.0\sigma(F_0)]$ gave
the final converged residual R of 0.038 8.
Crystal data for (3): $C_{12}H_{20}B_8C_{12}$, $M = 354.76$, orthorhombic,
space group Pnam, $a = 11.714(3)$, $b = 9$ 9. 1.256(3) Å, *U* = 1583.6 Å³, *D*_c = 1.488 g cm⁻³, *Z* = 4,
F(000) = 720 electrons, μ (Mo-*K*_α) = 12.86 cm⁻¹, Using 1661
data [F_o ≥ 2.0*σ*(*F_o*)] collected to θ_{max} = 30° (Mo-*K_α X*-radiation) at 293 **K,** the structure has been solved and refined, as for **(1)** and (2), to $R = 0.0997$.

Scheme 1. i, $[Ni(\eta-C_5H_5)_2]$; ii, $[AuMe(PPh_3)]$; iii, $[Cr(\eta-C_5H_5)_2]$. Filled circle $=$ CH, empty circle = BH, hatched circle = H

Figure 1. Molecular structure of $nido - [9-(\eta - C_5H_5) - 7,8,9 P_2$ NiB₈H₁₁, (1), showing only the major components of the
disordered structure. Important interatomic separations include
Ni-B(4) 2.053(10), Ni-B(5) 2.056(8), Ni-C(8) 2.011(13), Ni-B(10)
2.049(10), B(10)-B(11) 1.754 1.390(15), Ni-C(η -C_sH_s) 2.100(15) (mean) Å.

hydrofuran, 25 "C, **20** h) gives (Scheme **1)** a dark olive-green compound **(3)** (70%) , tructurally identified by X-ray crystallography (Figure 3). \ddagger The molecule bestrides a crystallographic mirror plane perpendicular to the $Cr(1)-Cr(1')$ connectivity. There is rotational disorder of the η -C₅H₅ groups about the η -C₅H₅-Cr axis (two discrete rings, site occupancy factors 59:41). The polyhedron of **(3)** is a *closo*icosahedron with a 1,2,3,4-Cr·C·Cr·C heteroatom pattern.

Figure 2. Perspective view of *nido-* $[9-(\eta - C_5H_5) - \mu_{10,11} - (Ph_3PAu) - 7,8,9 - C_2NiB_8H_{10}$, (2). Important molecular parameters Ni-B(4) 2.047(9), Ni-B(5) 2.082(8), Ni-C(8) 1.971(7), Ni-B(10) 2.144(8), $B(10) - B(11)$ 1.787(11), $B(11) - C(7)$ 1.712(10), C(7)-C(8) 1.499(9),
Ni-C(η -C₅H₅) (mean) 2.118(28), Au-B(10) 2.308(7), Au-B(11) 2.256(8), Au-P(1) 2.278(2) **A;** P(l)-Au-B(lO) 167.0(2), P(1)- Au-B(11) $146.5(2)$ °.

The Cr-Cr distance $[2.272(2)$ Å is the shortest^{\P} (by 0.08 Å) inter-metal distance yet recorded in a heteroborane. In the dicobalt analogue of (3) the Co–Co distance is $2.387(2)$ Å.⁸

Extended Huckel MO calculations on idealised models of $[1,3-(\eta - C_5H_5)_2 - 1,2,3,4-MCMCB_8H_{10}]$ (M = Sc--Cu) species suggest that the M-M connectivity will be strongest when $M = Cr$, since for this the five lowest unfilled orbitals are all

T The previous shortest **M-M** distance in a heteroborane is 2.354(1) Å in $[(\eta - C_s H_s)_4 N i_4 B_4 H_4]$: J. R. Bowser, A. Bonny, J. R. Pipal, and R. N. Grimes, *J. Am. Chem. Soc.*, 1979, 101, 6229.

Figure 3. Molecular structure of $closo-[1,3-(\eta-C_5H_5)_2-1,2,3,4-$ CrCCrCB₈H₁₀], (3). For clarity, only one (different) component
of the disordered η -C₈H₅ ligand is shown bound to each metal
atom. Important molecular parameters Cr(1)-Cr(1') 2.272(2),
Cr(1)-C(2) 2.175(9), Cr(1) $Cr(1) - B(6)$ 2.146(7) Å.

antibonding, and the three highest lying occupied orbitals are bonding, with respect to the M-M interaction. 9 We thank the S.E.R.C. for support.

Received, 29th November 1982; Com. 1372

References

- 1 G. K. Barker, M. Green, F. **G. A.** Stone, **A.** J. Welch, and W. C. Wolsey, *J. Chem. SOC., Chem. Commun.,* 1980, 627.
- 2 R. N. Grimes and W. *J.* Rademaker, *J. Am. Chem. Soc.,* 1969, **91,** 6498.
- **3** N. N. Greenwood and I. **M.** Ward, *Chem. SOC. Rev.,* 1974, **3,** 231.
- 4 J. W. Lauher and K. Wald, *J. Am. Chem. SOC.,* 1981, **103,** 7648.
- *⁵*B. F. **G.** Johnson, D. A. Kaner, **J.** Lewis, P. R. Raithby, and M. J. Taylor, *J. Chem.* Soc., *Chem. Cornmun.,* 1982, 314.
- 6 **M.** Green, K. **A.** Mead, R. M. Mills, 1. D. Salter, F. G. A. Stone, and P. Woodward, *J. Chem.* Soc., *Chem. Commun.,* 1982, 51.
- 7 D. G. Evans and D. **M.** P. Mingos, *J. Organomet. Chem.,* 1982, **232,** 171.
- 8 **K.** P. Callahan, C. E. Strouse, A. **L.** Sims, and M. **F.** Hawthorne, *Inorg. Chem.,* 1974, **13,** 1397.
- 9 **A. J.** Welch, unpublished results.